Part 3: Blocking

Clarence Cheung {kcheung6@wisc.edu}
Jin Ruan {jruan3@wisc.edu}

Pre-processing

¢ Understanding the data

In the development process, we look at some useful attributes such as zipCode, streetAddress, name
and city to do blocking. We first figure out the amount of missing values in each attribute and the table
below shows our investigation results:

zipCode city name street Address
table A | missing no Missing | no missing | Missing
table B | no missing | no missing | no missing | missing

From the above table, city and name seem to be good choices for the blocking process as there are no
missing values. Although there are some missing values in zipCode, this attribute is still considered a
good option since a small amount of 18 tuples will not hinder us from obtaining a reasonable candidate set.

e Cleaning the data

After learning the data and experimenting with the blockers, we did some modification to our original tables.
We modified the schema naming so that more feature functions are usable in the rule-based blocker. We
converted all the values in name to lowercase because it caused a bad performance on Jaccard Measure.
Then, we “normalized” some values in city so that there is no variation. For example, Brooklyn is
converted to New York since the conversion will prevent more promising matching tuples from being elim-
inated.

Development

In the development stage, we followed some of the suggestions from the Magellan User Manual and
came up with three different trials.

e First attempt:

Initially, we used the Attribute Equivalence blocker in Magellan on zipCode. As there are a few
missing values in table A, we first splited the table into two smaller table in which one has zipCode and
the other has NaN. Then we applied the blocker and check the results with the debugger. Unfortunately,
some tuple pairs are eliminated from the candidate set when they actually refer to the same entity. Since
the same restaurant has different zipCodes labeled from different websites, we decided that blocking on
zipCode with Attribute Equivalence is not promising enough to generate a good candidate set.

e Second attempt:

Our second attempt began with using Attribute Equivalence blocker on the attribute city between
table A and table B to get the candidate set C. Then we performed an overlapping with size = 1 on name
in C. To be conservative, the debugger was used again and unexpected results happened. For example, the
overlap blocker eliminated (jinwei, jin wei) because there is no overlapping.

1

e Final attempt:

Learning from previous experience, we first started with the Attribute Equivalence blocker on attribute
city to obtain a table C, and applied the rule-based blocker on C. Jaccard Measure with a threshold
value of 0.4 is chosen for the Similarity Function in the rule-based method (We did not consider TF/IDF
because it is too slow in our initial trials.) However,the debugger prompted us many false-negatives and so
we decreased the threshold value to 0.2, and obtained the candidate set E. A further investigation on set E
from the debugger hinted us that almost all of the false-negatives have exact streetAddress values. This
information leaded us to apply an Attribute Equivalence blocker on streetAddress from the eliminated
tuple pairs. Since it takes hours to do rule-based blocking on name, a faster alternative is to first equalize
the attribute streetAddress between table A and table B to reduce candidate tuple pairs and get table
D. Then we used the rule-based method with Jaccard Measure on name, but blocked tuple pairs with
similarity-value > 0.2 to get table F. The final step is combining table E and F via union to obtain the
candidate set G (which has approx. 430,000 tuple pairs.) A workflow graph can be found in the Appendix
section.

Debugger

As mentioned above, we utilized the debugger frequently in our iterative development process. We think
the debugger is very useful in the sense that it tells us the performance for each blocker. Without it, it will
be hard for us to realize the problem of using Attribute Equivalence blocking on zipCode. However, in
an iterative manner of development, it is extremely painful to use the current version of debugger because
the time to debug is quite long. In our case, the debugging process sometimes takes more than half an hour
to complete. From our observation, the current debugger uses the original tables, which are huge in size,
as input parameters. We hope that the future version of the debugger can be more flexible in the way that
it can support sub-tables as the users only want to compare the new candidate set with candidate sets in
certain steps. In that way, the time for debugging can possibly be reduced.

Miscellaneous

e Time spent:

We believe the time spent on this stage is roughly 1 day and more since it takes some time to run the
rule-based blocker and the debugger.

e Size of candidate set:

There are 9947 tuples in table A and 28787 tuples in table B. The numbers give us a Cartesian product
of roughly 280 million tuple pairs. Applying the blockers that we mentioned above, the tuple pairs are
reduced to 20 million in the intermediate steps and a final reduction to roughly 400, 000 pairs. We believe
this number is promising enough for use in the next stage.

Other issues

The availability of functions and the limited functionality to manipulate tables in Magellan has a big
impact on our time spent in the project. In our first attempt, we would like to split a single table based on

certain attribute but Magellan currently does not support operations within a table. We have to create
our own functions to split the table, and then manually reset the splited tables to the valid format. Other
than that, the combine_outputs_via_union function is not robust enough to handle tables of all kind,
and it would be great if this function can be used by the split tables. Also, it would be appreciated if some
of the functions can provide “Estimated Time Remaining (E7T'A)” to hint the users.

Appendix

The figure below shows a rough sketch on our workflow in the final blocking process:

city

A/ Attr-Equiv

a

streetAddress
Attr-Equiv

v
L i

name
Rule-based

Jaccard < 0.2

_,E

union—G

name
Rule-based
Jaccard >=0.2

